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Multi-Get Requests in Distributed Key-Value Stores
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Servers of the key-value stores

{x , y} Data partition of the server

• Each server holds a data partition

• Data replicated on k successor servers
• Scheduling a multi-get request implies

splitting into sub-requests to read data

→ Splitting is not trivial: reading different items
takes different times, and server loads are
different
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Multi-Get Request Splitting
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(Almost) Equivalent Scheduling Problem

Restricted Assignment on Intervals (RAI)

• Input:
• n jobs (= read operations)
• m identical machines (= servers)
• processing times pj (= times to read items)
• intervals of compatible machines ⟨aj , bj⟩ = {aj , aj + 1, · · · , bj}

• Output: sets of jobs Ji to put on each machine i

• Objective: minimize makespan
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Results

• Existing work:
• 2-approximation for R ||Cmax [Lenstra et al., 1990]
• (2 − 1/2k )-approximation for P |Mj |Cmax when pj ∈

{
1, 2, · · · , 2k} [Biró et al., 2014]

• No PTAS for RAI unless P = NP [Maack et al., 2020]
• Optimal algorithm for RAI when pj = 1 and m is fixed [Lin et al., 2004]

→ Real-time scheduling: cannot afford too complex algorithms

• In this talk:
→ Efficient (2 − 1/m)-approximation for RAI
→ Efficient (4 − 2/m)-approximation for a generalized version
→ Efficient and qualitative heuristics
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Estimated Least Flexible Job

ELFJ Algorithm

Parameter: estimated makespan λ.
Starting from the first machine, build a schedule
that finishes no later than time λ by processing in
priority the most constrained job.

Time complexity: O(n log n + mn) + time to compute λ
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Result

Computing Makespan λ

• λ = w̃max + (1− 1/m)pmax

• pmax = maximum processing time among jobs
• w̃max = maxα≤β w̃⟨α,β⟩ where w̃⟨α,β⟩ is the average amount of work that must be done

on interval ⟨α, β⟩

→ Can be computed in time O(m2 + n) with dynamic programming

Theorem
ELFJ is a (2− 1/m)-approximation algorithm for RAI with arbitrary jobs.

Runs in time O(m2 + n log n + mn).
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Generalizing the Problem with Circular Intervals

1

2

3

4

5

6

a1

b1

a2

b2

1

2

3

4

5

6

a3

b3

a4

b4

Regular RAI problem

⟨α, β⟩ = {α, α+ 1, · · · , β}

Circular RAI problem

⟨α, β⟩ =
{
{α, α+ 1, · · · , β} if α ≤ β

{α, · · · ,m} ∪ {1, · · · , β} otherwise.
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Splitting the Circular Problem into Regular Sub-Problems
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Result

Double ELFJ Algorithm (DELFJ)

Apply ELFJ for regular jobs, then for the circular ones, and merge schedules.

Theorem
DELFJ is a (4− 2/m)-approximation algorithm for circular RAI.

Proof sketch:

1. By previous theorem:

• ELFJ(I1) ≤ (2 − 1/m) OPT(I1)
• ELFJ(I2) ≤ (2 − 1/m) OPT(I2)

2. Moreover, OPT(I1) ≤ OPT(I) and OPT(I2) ≤ OPT(I)

3. Finally, DELFJ(I) ≤ ELFJ(I1) + ELFJ(I2) ≤ (4 − 2/m) OPT(I)

A. Dugois (FEMTO-ST, Univ. Franche-Comté). Solving the Restricted Assignment Problem to Schedule Multi-Get Requests in Key-Value Stores. August 29, 2024. 11
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Searched Least Flexible Job

SLFJ Algorithm

Progressively searches for a feasible makespan λ by successively applying ELFJ.

1: compute w̃max as if jobs were unitary
2: δ ← 0
3: repeat
4: apply ELFJ with λ = ⌈w̃max⌉+ δ
5: δ ← INCREASE(δ)
6: until all jobs are assigned

Note 1: this terminates because it always finds a solution when δ ≥ pmax.

Note 2: quality and speed both depend on the INCREASE function.
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Heuristics

Two Variants

• Arithmetic SLFJ
• INCREASE : δ → δ + 1
• Better quality, slower convergence

• Geometric SLFJ
• INCREASE : δ → max(1, 2δ)
• OK quality, faster convergence
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Simulation Setup

Baseline

• RANDOM: randomly assign each job to a compatible machine

• EFT-MIN: assign each job to the first compatible machine that completes it the earliest

• EFT-RAND: same as EFT-MIN, but with a randomized tie-break

Instance generation

• 48 servers

• Replication factor of 3

• 100 000 keys

• Reading times drawn from exponential distribution

• Two parameters:
• n = number of read operations in a multi-get request
• pop = popularity distribution of the keys
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Makespan of Each Multi-Get Request

• Ratio between makespan of each
multi-get request and optimal
solution (lower is better)

• Fixed sizes (32 and 256)

• Popularity distributions:
• Unif: keys have the same

probability to be requested
• Zipf: the probability of a key

to be requested is correlated
to its rank

→ GSLFJ converges faster, with a
quality almost equal to ASLFJ
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Throughput of a Stream of Requests

• Ratio between throughput of a
stream of requests and solution
given by baseline heuristic
EFT-MIN (higher is better)

• Size distributions:
• Unif (between 1 and 256)
• Exp: “small” requests more

probable

→ Optimizing multi-get requests
individually leads to global
improvements
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Conclusion

• (2− 1/m)-approx. for RAI
• Circular (generalized) version of RAI + (4− 2/m)-approx.
• Heuristics give close-to-optimal solutions in practice
• Optimizing individual requests leads to global improvements

• Perspectives:
• Is there a better approx. for circular RAI?
• What guarantees can we have if only estimations are available for pj?
• Experiment heuristics in actual systems
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Thank you!

Read the paper
Reach me at anthony.dugois@univ-fcomte.fr
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Computing Makespan λ

w⟨1,m−1⟩

w⟨2,m−1⟩w⟨1,m−2⟩
w⟨2,m−2⟩

v⟨1,m⟩

v⟨1,m−1⟩ v⟨2,m⟩

v⟨1,m−2⟩ v⟨2,m−1⟩ v⟨3,m⟩

v⟨1,m−3⟩ v⟨2,m−2⟩ v⟨3,m−1⟩ v⟨4,m⟩

v⟨1,1⟩ v⟨2,2⟩ v⟨m−1,m−1⟩ v⟨m,m⟩· · ·

• v⟨α,β⟩: total work of jobs j such
that aj = α and bj = β.

• w⟨α,β⟩: total work of jobs j such
that α ≤ aj ≤ bj ≤ β.

Dynamic programming: w⟨α,β⟩ = v⟨α,β⟩ + w⟨α,β−1⟩ + w⟨α+1,β⟩ − w⟨α+1,β−1⟩

Time complexity: O(m2 + n)
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Proof Sketch

1. λ = w̃max + (1 − 1/m) pmax

2. Suppose by contradiction that a job j0 cannot
be scheduled before λ

3. Progressively search for a machine α such
that almost all the work done on
α, α+ 1, · · · , bj0 is included in w⟨α,bj0

⟩

• either all jobs done on ⟨aj0 , bj0 ⟩ are
included in w⟨aj0

,bj0
⟩, or

• there is a job j1 done on ⟨aj0 , bj0 ⟩ such
that aj1 < aj0

4. w⟨α,bj0
⟩ > (bj0 − α+ 1)(λ− pmax) +

(bj0 − aj0 + 1)(λ− pj0 − (λ− pmax)) + pj0 ,

5. Leads to λ < w̃⟨α,bj0
⟩ + (1 − 1/m) pmax

6. → Contradicts 1.

j0

λ − pmax

λ − pj0 λ

bj0

aj0

aj0 − 1

α

γ

γ − 1
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Necessary Condition for Splitting

1
2

3

4
5

6
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8

r

ℓ

5

6

7

8

1

2

3

4

I2 cannot be regularized if ℓ ≤ r
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