

Bounding the Flow Time in Online Scheduling with Structured Processing Sets

L.-C. Canon¹, A. Dugois² and L. Marchal²

¹FEMTO-ST, Univ. Franche-Comté, France ²LIP, ENS Lyon, Inria, France

June 1, 2022 – 36th IEEE International Parallel and Distributed Processing Symposium

Key-value store (KVS)

Database whose values are bound to unique keys.

Distributed model

- Each server M_1, M_2, \ldots holds a data partition.
- Partitions are replicated on different servers.
- Several servers may process a read query.

Introduction General Problem

Scheduling problem

Schedule requests to bound the reponse time F_i of each request *i*.

Graham	Туре	Description
Р	Constraint	Homogeneous environment
\mathcal{M}_i	Constraint	Restricted assignment
online- <i>r</i> i	Constraint	Online over time model
0	Constraint	No preemption
F_{\max}	Objective	Maximum response time

Introduction General Problem

Scheduling problem

Schedule requests to bound the reponse time F_i of each request *i*.

Processing set restriction

 \mathcal{M}_i is the subset of machines able to process request *i*.

Graham	Туре	Description
Р	Constraint	Homogeneous environment
\mathcal{M}_i	Constraint	Restricted assignment
online- <i>r</i> i	Constraint	Online over time model
0	Constraint	No preemption
F_{\max}	Objective	Maximum response time

Processing Set Structures

General (no structure)

General (no structure)

Processing sets exhibit no particular structure.

Competitive ratio Lower bound = $\Omega(m)$ [Anand et al., 2017]

m = number of machines

Processing Set Structures Filled structure

Filled (full replication)

Any machine can process a given request.

Earliest Finish Time (EFT)

Schedule each arriving request on the eligible machine that completes it first.

Competitive ratio

EFT is (3 – 2/m)-competitive [Bender et al., 1998]

Processing Set Structures Nested structure

Nested

Two processing sets are either nested or disjoint.

Competitive ratio Lower bound = $\frac{1}{3} \lfloor \log_2(m) + 2 \rfloor$

Processing Set Structures Disjoint structure

Disjoint

Two processing sets are either equal or disjoint.

Competitive ratio EFT is $(3 - 2/\max_i |\mathcal{M}_i|)$ -competitive

 $|\mathcal{M}_i|$ = number of machines able to process req. *i*

Processing Set Structures

Fixed-size interval structure

Fixed-size interval (common in KVS)

Each processing set is a contiguous interval of size k.

Competitive ratio

Lower bound for EFT = m - k + 1

Processing Set Structures Summary

Processing set structure	Algorithm	Competitive ratio
Filled	EFT	3-2/ <i>m</i>
Disjoint	EFT	$3-2/\max_i \mathcal{M}_i $
General	Any	$\geq \Omega(m)$
Nested	Any	$\geq rac{1}{3} \lfloor \log_2(m) + 2 floor$
Interval	EFT	$\geq m-k+1$

Processing Set Structures Summary

Processing set structure	Algorithm	Competitive ratio
Filled	EFT	3-2/ <i>m</i>
Disjoint	EFT	$3-2/\max_i \mathcal{M}_i $
General	Any	$\geq \Omega(m)$
Nested	Any	$\geq rac{1}{3} \lfloor \log_2(m) + 2 floor$
Interval	EFT	$\geq m-k+1$

Introducing popularity biases

Partition popularity

- Recall each request looks for data.
- Some data may be more popular.
- Popularity_i = probability to choose j

Introducing popularity biases

Partition popularity

- Recall each request looks for data.
- Some data may be more popular.
- Popularity_i = probability to choose j

Machine load

• $\lambda =$ number of arriving req. per time unit

 $\lambda = 4.5$

Load_j =
$$\lambda \cdot \text{Popularity}_j$$

• Load_{*j*} > 1 \iff *j* is overloaded

Performance under Biased Popularity Load balancing

Replicate to load-balance

- Copy partition 3 on machines 4 and 5.
- Hypothesis: perfect load balancer.
- $\lambda = 4.5$ becomes feasible!

Replicate to load-balance

- Copy partition 3 on machines 4 and 5.
- Hypothesis: perfect load balancer.
- $\lambda = 4.5$ becomes feasible!

$\begin{array}{ll} \text{maximize} & \lambda \\ \text{subject to} & \forall j, \sum_{i} a(i,j) = \text{Load}_{j}, \\ & \forall i, \sum_{j} a(i,j) \leq 1, \\ & \forall i, j, \ i \notin \text{Rep}_{j} \implies a(i,j) = 0, \\ & \forall i, j, \ a(i,j) \geq 0 \end{array}$

Load _j	:	$\lambda \cdot Popularity_j$
Rep _j	:	set of replica of j
a(i,j)	:	work transfer from <i>j</i> to <i>i</i>

Comparing disjoint/interval structures

Max λ for disjoint/interval

- Popularity bias: Zipf's law (bias *s*).
- Replication strategies:
 - ► Fixed-size disjoint (size *k*).
 - ► Fixed-size interval (size *k*).
- Solve for each combination of *k* and *s*.

$$\mathsf{Ratio}(k, s) = rac{\lambda_{\mathsf{max}}(\mathsf{interval}, k, s)}{\lambda_{\mathsf{max}}(\mathsf{disjoint}, k, s)}$$

Conclusion

Online problem

Often difficult even with structured processing sets.

Disjoint/interval structures

- Disjoint: strong guarantee on max-flow (EFT: 3 2/k)
- Interval: higher resilience to load (+50% in some cases)

Perspectives

Is there a structure that offers both max-flow guarantee and good resilience to load?