
June 1, 2022 – 36th IEEE International Parallel and Distributed Processing Symposium

1FEMTO-ST, Univ. Franche-Comté, France
2LIP, ENS Lyon, Inria, France

L.-C. Canon1, A. Dugois2 and L. Marchal2

Bounding the Flow Time in Online Scheduling
with Structured Processing Sets



Introduction
Applicative Context

Partitions

M1 M2

M3

M4M5

M6

Key-value store (KVS)

Database whose values are bound to unique keys.

Distributed model

• Each server M1,M2, . . . holds a data partition.
• Partitions are replicated on different servers.
• Several servers may process a read query.
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Introduction
General Problem

Scheduling problem

Schedule requests to bound the
reponse time Fi of each request i .

Processing set restriction

Mi is the subset of machines able
to process request i .

Graham Type Description

P Constraint Homogeneous environment

Mi Constraint Restricted assignment

online-ri Constraint Online over time model

◦ Constraint No preemption

Fmax Objective Maximum response time
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Processing Set Structures
General (no structure)

M1 M2 M3 M4 M5 M6

1 1 1 1 1 1 1

2 0 1 0 1 0 1

3 0 0 1 0 1 1

4 1 1 0 1 1 0

5 0 0 0 0 0 1

Machines

R
eq

ue
st

s

General (no structure)

Processing sets exhibit no particular structure.

Competitive ratio

Lower bound = Ω(m) [Anand et al., 2017]

m = number of machines
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Processing Set Structures
Filled structure

M1 M2 M3 M4 M5 M6

1 1 1 1 1 1 1

2 1 1 1 1 1 1

3 1 1 1 1 1 1

4 1 1 1 1 1 1

5 1 1 1 1 1 1

Machines

R
eq

ue
st

s

Filled (full replication)

Any machine can process a given request.

Earliest Finish Time (EFT)

Schedule each arriving request on the eligible
machine that completes it first.

Competitive ratio

EFT is (3− 2/m)-competitive [Bender et al., 1998]
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Processing Set Structures
Nested structure

M1 M2 M3 M4 M5 M6

1 1 1 1 1 1 1

2 1 1 1 0 0 0

3 0 0 0 0 1 1

4 1 1 0 0 0 0

5 0 0 0 0 1 0

Machines

R
eq

ue
st

s

Nested
Two processing sets are either nested or disjoint.

Competitive ratio

Lower bound = 1
3blog2(m) + 2c
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Processing Set Structures
Disjoint structure

M1 M2 M3 M4 M5 M6

1 1 1 0 0 0 0

2 1 1 0 0 0 0

3 0 0 1 1 1 0

4 0 0 1 1 1 0

5 0 0 0 0 0 1

Machines

R
eq

ue
st

s

Disjoint

Two processing sets are either equal or disjoint.

Competitive ratio

EFT is (3− 2/maxi |Mi |)-competitive

|Mi | = number of machines able to process req. i
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Processing Set Structures
Fixed-size interval structure

M1 M2 M3 M4 M5 M6

1 1 1 1 0 0 0

2 0 1 1 1 0 0

3 0 0 0 1 1 1

4 0 0 1 1 1 0

5 0 1 1 1 0 0

Machines

R
eq

ue
st

s

Fixed-size interval (common in KVS)

Each processing set is a contiguous interval of size k .

Competitive ratio

Lower bound for EFT = m − k + 1
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Processing Set Structures
Summary

Processing set structure Algorithm Competitive ratio

Filled EFT 3− 2/m

Disjoint EFT 3− 2/maxi |Mi |

General Any ≥ Ω(m)

Nested Any ≥ 1
3blog2(m) + 2c

Interval EFT ≥ m − k + 1
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Performance under Biased Popularity
Introducing popularity biases
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Partition popularity

• Recall each request looks for data.

• Some data may be more popular.

• Popularityj = probability to choose j

Machine load

• λ = number of arriving req. per time unit

• Loadj = λ · Popularityj

• Loadj > 1⇐⇒ j is overloaded
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Performance under Biased Popularity
Load balancing
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λ = 4.5

Replicate to load-balance

• Copy partition 3 on machines 4 and 5.

• Hypothesis: perfect load balancer.

• λ = 4.5 becomes feasible!

maximize λ

subject to ∀j ,
∑

i
a (i , j) = Loadj ,

∀i ,
∑

j
a (i , j) ≤ 1,

∀i , j , i /∈ Repj =⇒ a (i , j) = 0,
∀i , j , a (i , j) ≥ 0

Loadj : λ · Popularityj

Repj : set of replica of j
a (i, j) : work transfer from j to i
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Performance under Biased Popularity
Comparing disjoint/interval structures
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Ratio Max λ for disjoint/interval

• Popularity bias: Zipf’s law (bias s).
• Replication strategies:

I Fixed-size disjoint (size k ).
I Fixed-size interval (size k ).

• Solve for each combination of k and s.

Ratio(k , s) =
λmax(interval, k , s)

λmax(disjoint, k , s)
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Conclusion

Online problem

Often difficult even with structured processing sets.

Disjoint/interval structures

• Disjoint: strong guarantee on max-flow (EFT: 3− 2/k )
• Interval: higher resilience to load (+50% in some cases)

Perspectives

Is there a structure that offers both max-flow guarantee and good resilience to load?
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