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Introduction

Client
Request/Response I
Key (e.g. users.1.name)
,,,,,,,,,,,,,,,,,,,,,,, (Replicated)
Backend
acken drmmmmm Key-Value Store
Value (e.g. "User 1")
® Strongly fault-tolerant ® Highly available
® Highly scalable ® Examples: Dynamo, Cassandra, Redis
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Tail Latency

Slowing a small fraction of requests (< 5 %) may degrade the QoS for most users.
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Introduction

How to mitigate tail latency

Common approach: avoid that a request be sent to a busy server when a more
available one would have answered faster — this is scheduling!
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Introduction

How to mitigate tail latency

Common approach: avoid that a request be sent to a busy server when a more
available one would have answered faster — this is scheduling!

® |s there an optimal scheduling strategy?
® Can we bound the performance of an offline strategy?

® Which information do we need to build an efficient strategy?
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Model
What happens in a KVS

Servers are named My, M,, . ..

M,

Requested key

M3 Ms holds req. value

[] Keys of M5
[[] Replicas of Ms

Requested value
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Model
Application and platform

vi | $sizeof v, @ Each request carries a key.
Vo A

[ Values {Vq, ...,V .}
[ Keys {Ky,- .., Kc}
O Requests {Ty,..., Ty}
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Model
Application and platform

5 Va | S size of v, Each request carries a key.
2 Vs . .
Each key is associated to a value.
Requests have different processing times.
Processing time of a request is linear in
e e e @ G @ requested value size.

® A request is released at time r;.

[J Values {V1, ..., Vc} ® Preemption is not allowed.
[ Keys {Ky,...,Kc}
O Requests {Ty,..., Tn}
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Model
Objective

Read-latency — Flow time F; = C; —r; of each request
(where C; is the completion time)
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—  ~ Max-flow Fnax = max F;
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Model
Objective

Read-latency — Flow time F; = C; —r; of each request
(where C; is the completion time)

99th quantile — ~ Max-flow Fpax = max F;

Fairness/equity — Weighted max-flow maxw;F; (e.g., min-
imize the stretch instead of pure latency)

Scheduling Problem

Considering our constraints and objective, we are interested in the scheduling
problem P|M;, online-r;| max w;F; (Graham's notation).
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Scheduling
Without release times (F; = G;)

Our problem is clearly NP-hard (by reduction to the parallel makespan
problem). First approach: try to relax the problem and find which variants
are easier.
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Scheduling
Without release times (F; = G;)

Our problem is clearly NP-hard (by reduction to the parallel makespan
problem). First approach: try to relax the problem and find which variants
are easier.

® Start with the single-server problem; we give an optimal algorithm.

Algorithm 2 SINGLE-SIMPLE
Require: w;
1: schedule requests by non-increasing order of w;

Theorem

SINGLE-SIMPLE solves 1|| max w;C; in polynomial-time.
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® By a simple exchange argument, SINGLE-SIMPLE is optimal on
parallel platforms (with full replication) when costs are homogeneous.

SINGLE-SIMPLE solves P|p; = p| max w;C; in polynomial-time.
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Scheduling
Without release times (F; = G;)

® By a simple exchange argument, SINGLE-SIMPLE is optimal on
parallel platforms (with full replication) when costs are homogeneous.

SINGLE-SIMPLE solves P|p; = p| max w;C; in polynomial-time.

® For heterogeneous costs, we find that it approximates the problem by
a factor 2 — 1/m, with m the number of machines.

SINGLE-SIMPLE is a tight (2 — 1/m)-approximation for P|| max w;C;.
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Scheduling
Offline problem

® The preemptive version of our problem is solved by Legrand et al.!

R|r;, pmtn| max w; F; can be solved in polynomial-time.

Y egrand, A., Su, A., Vivien, F.: Minimizing the stretch when scheduling flows of
divisible requests. Journal of Scheduling (2008).
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Scheduling
Offline problem

® The preemptive version of our problem is solved by Legrand et al.

R|r;, pmtn| max w; F; can be solved in polynomial-time.

Model restricted replication in unrelated setting

If a request i cannot be executed by a server j, set the corresponding processing
time p;j = co. As a consequence, solving R|r;, pmtn| max w;F; also solves
P|M,, r;, pmtn| max w; F;.

Y egrand, A., Su, A., Vivien, F.: Minimizing the stretch when scheduling flows of

divisible requests. Journal of Scheduling (2008).
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Scheduling
Offline problem

® Recall we do not allow preemption in our model, mainly because of
the overhead of migration. By a reduction to the parallel makespan
problem, we show that the problem becomes NP-complete when
migration is not allowed. . .

The non-migratory version of R|r;, pmtn| max w;F; is NP-complete.
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Scheduling
Offline problem

® Recall we do not allow preemption in our model, mainly because of
the overhead of migration. By a reduction to the parallel makespan
problem, we show that the problem becomes NP-complete when
migration is not allowed. . .

The non-migratory version of R|r;, pmtn| max w;F; is NP-complete.

® . but the preemptive version still provides a lower bound for our
problem!
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Simulations
Online heuristics

Scheduling happens at two levels.

2Jaiman, V., Ben Mokhtar, S., Quéma, V., Chen, L. Y., Riviére, E.: Héron: Taming
tail latencies in key-value stores under heterogeneous workloads. 37th Symposium on
Reliable Distributed Systems (2018).
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Simulations
Online heuristics

Scheduling happens at two levels.
1. Replica Selection: choose which resource will execute the request.

® EFT: send request to the least-loaded server.
® EFT-S: same as EFT, but specializes some servers for short requests.
® State-of-the-art heuristics: HERONZ, LOR, RANDOM.

2. Local Execution: choose in which order the server executes the local

queue.

® FTFO: classic first-in first-out queue.
® MWEF: sort queue by non-increasing weighted flow time.

Note on EFT

EFT is very difficult to achieve in a real system. One would consider a degraded
version in practice; our goal here is to evaluate the best possible situation.

2Jaiman, V., Ben Mokhtar, S., Quéma, V., Chen, L. Y., Riviére, E.: Héron: Taming
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Simulations

Distribution of normalized read-latency and stretch maximums (1000 requests)
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Simulations
Results

e EFT allows to get very close to the lower bound for read-latency.
e EFT is the most stable heuristic for read-latency between scenarios.
e EFT-S is not good for read-latency, but it is the best for the stretch.

® MWFEF improves the stretch objective of all selection heuristics without
worsening read-latency too much.
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Conclusion

® Formal model of key-value store.

® |ntractability of the related scheduling problem, even for some
restricted variants.

® Comparison of online heuristics with a lower bound.
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® Comparison of online heuristics with a lower bound.

Answers to initial questions

® |s there an optimal scheduling strategy?
— The problem is NP-hard.

® Can we bound the performance of an offline strategy?
— Yes! The preemptive version provides a lower bound.

¢ What information do we need to build an efficient strategy?
— Simulations show that a good knowledge of current load is critical.
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