Taming Tail Latency in Key-Value Stores: a Scheduling Perspective

S. Ben Mokhtar, L.-C. Canon, A. Dugois, L. Marchal and E. Rivière

Anthony Dugois Inria, LIP, ENS Lyon, France

27th International European Conference on Parallel and Distributed Computing

September 2, 2021

Ínría c

1. Introduction

2. Model

- What happens in a KVS
- Application and platform
- Objective
- 3. Scheduling
 - Without release times $(F_i = C_i)$
 - Offline problem
- 4. Simulations
 - Online heuristics
 - Results

5. Conclusion

Introduction

- Strongly fault-tolerant
- Highly scalable

- Highly available
- Examples: Dynamo, Cassandra, Redis

Introduction

- One user request requires multiple data items.
- Overall latency is that of the slowest request.
- A small fraction of request may result in overall degradation.

Introduction

- One user request requires multiple data items.
- Overall latency is that of the slowest request.
- A small fraction of request may result in overall degradation.

Tail Latency

Slowing a small fraction of requests (< 5 %) may degrade the QoS for most users.

Common approach: avoid that a request be sent to a busy server when a more available one would have answered faster \rightarrow this is scheduling!

Common approach: avoid that a request be sent to a busy server when a more available one would have answered faster \rightarrow this is scheduling!

Questions

• Is there an optimal scheduling strategy?

Common approach: avoid that a request be sent to a busy server when a more available one would have answered faster \rightarrow this is scheduling!

Questions

- Is there an optimal scheduling strategy?
- Can we bound the performance of an offline strategy?

Common approach: avoid that a request be sent to a busy server when a more available one would have answered faster \rightarrow this is scheduling!

Questions

- Is there an optimal scheduling strategy?
- Can we bound the performance of an offline strategy?
- Which information do we need to build an *efficient* strategy?

1. Introduction

2. Model

- What happens in a KVS
- Application and platform
- Objective
- 3. Scheduling
 - Without release times $(F_i = C_i)$
 - Offline problem
- 4. Simulations
 - Online heuristics
 - Results

5. Conclusion

Servers are named M_1, M_2, \ldots

1. When a request reaches the cluster...

- 1. When a request reaches the cluster...
- 2. ... locate the key

- $S_{\text{Size of }V_4}$ Each request carries a key.
 - Each key is associated to a value.

 $Values \{V_1, \ldots, V_c\}$ $Keys \{K_1, \ldots, K_c\}$ $Requests \{T_1, \ldots, T_n\}$

- Each request carries a key.
 - Each key is associated to a value.
 - Requests have different processing times.

Values $\{V_1, \ldots, V_c\}$ Keys $\{K_1, \ldots, K_c\}$ Requests $\{T_1, \ldots, T_n\}$

Values $\{V_1, \ldots, V_c\}$ Keys $\{K_1, \ldots, K_c\}$ Requests $\{T_1, \ldots, T_n\}$

- Each request carries a key.
- Each key is associated to a value.
- Requests have different processing times.
- Processing time of a request is linear in requested value size.

- Each request carries a key.
- Each key is associated to a value.
- Requests have different processing times.
- Processing time of a request is linear in requested value size.
- A request is released at time r_i.

- Values $\{V_1, \ldots, V_c\}$ Kevs $\{K_1, \ldots, K_c\}$
- \bigcirc Requests $\{T_1, \ldots, T_n\}$

- Each request carries a key.
- Each key is associated to a value.
- Requests have different processing times.
- Processing time of a request is linear in requested value size.
- A request is released at time r_i.
- Preemption is not allowed.

Read-latency \longrightarrow Flow time $F_i = C_i - r_i$ of each request (where C_i is the completion time)

Read-latency \longrightarrow Flow time $F_i = C_i - r_i$ of each request (where C_i is the completion time) **99th quantile** $\longrightarrow \sim$ Max-flow $F_{max} = \max F_i$

Read-latency	\longrightarrow	Flow time $F_i = C_i - r_i$ of each request (where C_i is the completion time)
99th quantile	\rightarrow	\sim Max-flow $F_{max} = \max F_i$
Fairness/equity	\longrightarrow	Weighted max-flow max <i>w_iF_i</i> (e.g., min- imize the stretch instead of pure latency)

Read-latency	\longrightarrow	Flow time $F_i = C_i - r_i$ of each request (where C_i is the completion time)
99th quantile	\longrightarrow	\sim Max-flow $F_{max} = \max F_i$
Fairness/equity	\longrightarrow	Weighted max-flow max <i>w_iF_i (e.g., min-</i> <i>imize the stretch instead of pure latency)</i>

Scheduling Problem

I

Considering our constraints and objective, we are interested in the scheduling problem $P|M_i$, online- $r_i|\max w_iF_i$ (Graham's notation).

1. Introduction

2. Model

- What happens in a KVS
- Application and platform
- Objective
- 3. Scheduling
 - Without release times $(F_i = C_i)$
 - Offline problem
- 4. Simulations
 - Online heuristics
 - Results

5. Conclusion

Scheduling Without release times $(F_i = C_i)$

Our problem is clearly NP-hard (by reduction to the parallel makespan problem). First approach: try to relax the problem and find which variants are easier.

Our problem is clearly NP-hard (by reduction to the parallel makespan problem). First approach: try to relax the problem and find which variants are easier.

• Start with the single-server problem; we give an optimal algorithm.

Algorithm 2 SINGLE-SIMPLE

Require: *w_i*

1: schedule requests by non-increasing order of w_i

Theorem

SINGLE-SIMPLE solves $1 || \max w_i C_i$ in polynomial-time.

Scheduling Without release times $(F_i = C_i)$

• By a simple exchange argument, SINGLE-SIMPLE is optimal on parallel platforms (with full replication) when costs are homogeneous.

Theorem

SINGLE-SIMPLE solves $P|p_i = p| \max w_i C_i$ in polynomial-time.

Scheduling Without release times $(F_i = C_i)$

• By a simple exchange argument, SINGLE-SIMPLE is optimal on parallel platforms (with full replication) when costs are homogeneous.

Theorem

SINGLE-SIMPLE solves $P|p_i = p| \max w_i C_i$ in polynomial-time.

• For heterogeneous costs, we find that it approximates the problem by a factor 2 - 1/m, with *m* the number of machines.

Theorem

SINGLE-SIMPLE is a tight (2 - 1/m)-approximation for $P || \max w_i C_i$.

• The preemptive version of our problem is solved by Legrand et al.¹

Theorem

 $R|r_i, pmtn| \max w_i F_i$ can be solved in polynomial-time.

¹Legrand, A., Su, A., Vivien, F.: Minimizing the stretch when scheduling flows of divisible requests. Journal of Scheduling (2008).

• The preemptive version of our problem is solved by Legrand et al.¹

Theorem

 $R|r_i, pmtn| \max w_i F_i$ can be solved in polynomial-time.

Model restricted replication in unrelated setting

If a request *i* cannot be executed by a server *j*, set the corresponding processing time $p_{ij} = \infty$. As a consequence, solving $R|r_i, pmtn| \max w_i F_i$ also solves $P|\mathcal{M}_i, r_i, pmtn| \max w_i F_i$.

¹Legrand, A., Su, A., Vivien, F.: Minimizing the stretch when scheduling flows of divisible requests. Journal of Scheduling (2008).

• Recall we do not allow preemption in our model, mainly because of the overhead of migration. By a reduction to the parallel makespan problem, we show that the problem becomes NP-complete when migration is not allowed...

Theorem

The non-migratory version of $R|r_i, pmtn| \max w_i F_i$ is NP-complete.

• Recall we do not allow preemption in our model, mainly because of the overhead of migration. By a reduction to the parallel makespan problem, we show that the problem becomes NP-complete when migration is not allowed...

Theorem

The non-migratory version of $R|r_i, pmtn| \max w_i F_i$ is NP-complete.

• ... but the preemptive version still provides a **lower bound** for our problem!

1. Introduction

2. Model

- What happens in a KVS
- Application and platform
- Objective
- 3. Scheduling
 - Without release times $(F_i = C_i)$
 - Offline problem

4. Simulations

- Online heuristics
- Results

5. Conclusion

²Jaiman, V., Ben Mokhtar, S., Quéma, V., Chen, L. Y., Rivière, E.: Héron: Taming tail latencies in key-value stores under heterogeneous workloads. 37th Symposium on Reliable Distributed Systems (2018).

1. **Replica Selection**: choose which resource will execute the request.

²Jaiman, V., Ben Mokhtar, S., Quéma, V., Chen, L. Y., Rivière, E.: Héron: Taming tail latencies in key-value stores under heterogeneous workloads. 37th Symposium on Reliable Distributed Systems (2018).

- 1. **Replica Selection**: choose which resource will execute the request.
 - EFT: send request to the least-loaded server.

²Jaiman, V., Ben Mokhtar, S., Quéma, V., Chen, L. Y., Rivière, E.: Héron: Taming tail latencies in key-value stores under heterogeneous workloads. 37th Symposium on Reliable Distributed Systems (2018).

- 1. **Replica Selection**: choose which resource will execute the request.
 - EFT: send request to the least-loaded server.
 - EFT-S: same as EFT, but specializes some servers for short requests.

²Jaiman, V., Ben Mokhtar, S., Quéma, V., Chen, L. Y., Rivière, E.: Héron: Taming tail latencies in key-value stores under heterogeneous workloads. 37th Symposium on Reliable Distributed Systems (2018).

- 1. **Replica Selection**: choose which resource will execute the request.
 - EFT: send request to the least-loaded server.
 - $\bullet~\mathrm{EFT}\mathchar`-S:$ same as $\mathrm{EFT}\mathchar`-s$ but specializes some servers for short requests.
 - State-of-the-art heuristics: HÉRON², LOR, RANDOM.

²Jaiman, V., Ben Mokhtar, S., Quéma, V., Chen, L. Y., Rivière, E.: Héron: Taming tail latencies in key-value stores under heterogeneous workloads. 37th Symposium on Reliable Distributed Systems (2018).

- 1. **Replica Selection**: choose which resource will execute the request.
 - $\bullet~{\rm EFT}:$ send request to the least-loaded server.
 - EFT-S: same as EFT, but specializes some servers for short requests.
 - State-of-the-art heuristics: HÉRON², LOR, RANDOM.
- 2. Local Execution: choose in which order the server executes the local queue.

²Jaiman, V., Ben Mokhtar, S., Quéma, V., Chen, L. Y., Rivière, E.: Héron: Taming tail latencies in key-value stores under heterogeneous workloads. 37th Symposium on Reliable Distributed Systems (2018).

- 1. **Replica Selection**: choose which resource will execute the request.
 - $\bullet~{\rm EFT}:$ send request to the least-loaded server.
 - EFT-S: same as EFT, but specializes some servers for short requests.
 - State-of-the-art heuristics: HÉRON², LOR, RANDOM.
- 2. Local Execution: choose in which order the server executes the local queue.
 - FIFO: classic first-in first-out queue.

²Jaiman, V., Ben Mokhtar, S., Quéma, V., Chen, L. Y., Rivière, E.: Héron: Taming tail latencies in key-value stores under heterogeneous workloads. 37th Symposium on Reliable Distributed Systems (2018).

- 1. **Replica Selection**: choose which resource will execute the request.
 - $\bullet~{\rm EFT}:$ send request to the least-loaded server.
 - EFT-S: same as EFT, but specializes some servers for short requests.
 - State-of-the-art heuristics: HÉRON², LOR, RANDOM.
- 2. Local Execution: choose in which order the server executes the local queue.
 - FIFO: classic first-in first-out queue.
 - $\bullet~\mathrm{MWF}:$ sort queue by non-increasing weighted flow time.

²Jaiman, V., Ben Mokhtar, S., Quéma, V., Chen, L. Y., Rivière, E.: Héron: Taming tail latencies in key-value stores under heterogeneous workloads. 37th Symposium on Reliable Distributed Systems (2018).

- 1. **Replica Selection**: choose which resource will execute the request.
 - $\bullet~{\rm EFT}:$ send request to the least-loaded server.
 - EFT-S: same as EFT, but specializes some servers for short requests.
 - State-of-the-art heuristics: HÉRON², LOR, RANDOM.
- 2. Local Execution: choose in which order the server executes the local queue.
 - FIFO: classic first-in first-out queue.
 - $\bullet~\mathrm{MWF}:$ sort queue by non-increasing weighted flow time.

Note on EFT

 $\rm EFT$ is very difficult to achieve in a real system. One would consider a degraded version in practice; our goal here is to evaluate the best possible situation.

²Jaiman, V., Ben Mokhtar, S., Quéma, V., Chen, L. Y., Rivière, E.: Héron: Taming tail latencies in key-value stores under heterogeneous workloads. 37th Symposium on Reliable Distributed Systems (2018).

Simulations

Distribution of normalized read-latency and stretch maximums (1000 requests)

Takeaways

- $\bullet~{\rm EFT}$ allows to get very close to the lower bound for read-latency.
- $\bullet~{\rm EFT}$ is the most stable heuristic for read-latency between scenarios.
- $\bullet~{\rm EFT}\mathchar`-S$ is not good for read-latency, but it is the best for the stretch.
- MWF improves the stretch objective of all selection heuristics without worsening read-latency too much.

1. Introduction

2. Model

- What happens in a KVS
- Application and platform
- Objective
- 3. Scheduling
 - Without release times $(F_i = C_i)$
 - Offline problem

4. Simulations

- Online heuristics
- Results

5. Conclusion

- Formal model of key-value store.
- Intractability of the related scheduling problem, even for some restricted variants.
- Comparison of online heuristics with a lower bound.

- Formal model of key-value store.
- Intractability of the related scheduling problem, even for some restricted variants.
- Comparison of online heuristics with a lower bound.

Answers to initial questions

• Is there an optimal scheduling strategy? \rightarrow The problem is NP-hard.

- Formal model of key-value store.
- Intractability of the related scheduling problem, even for some restricted variants.
- Comparison of online heuristics with a lower bound.

Answers to initial questions

- Is there an optimal scheduling strategy?
 → The problem is NP-hard.
- Can we bound the performance of an offline strategy?
 → Yes! The preemptive version provides a lower bound.

- Formal model of key-value store.
- Intractability of the related scheduling problem, even for some restricted variants.
- Comparison of online heuristics with a lower bound.

Answers to initial questions

- Is there an optimal scheduling strategy?
 → The problem is NP-hard.
- Can we bound the performance of an offline strategy?
 → Yes! The preemptive version provides a lower bound.
- What information do we need to build an *efficient* strategy?
 → Simulations show that a good knowledge of current load is critical.