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Introduction

(Replicated)
Key-Value StoreBackend

Client

Request/Response
Key (e.g. users.1.name)

Value (e.g. "User 1")

• Strongly fault-tolerant
• Highly scalable

• Highly available
• Examples: Dynamo, Cassandra, Redis
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Introduction

• One user request requires
multiple data items.

• Overall latency is that of
the slowest request.

• A small fraction of request
may result in overall
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Slowing a small fraction of requests (< 5 %) may degrade the QoS for most users.
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Introduction

How to mitigate tail latency
Common approach: avoid that a request be sent to a busy server when a more
available one would have answered faster → this is scheduling!

Questions

• Is there an optimal scheduling strategy?

• Can we bound the performance of an offline strategy?
• Which information do we need to build an efficient strategy?
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Model
What happens in a KVS

Servers are named M1,M2, . . .

M1M2

M3

M4 M5

M6

M1M2

M3

M4 M5

M6

Keys of M5
Replicas of M5

Requested key

M5 holds req. value

Requested value

Req. value

Req. value 1. When a request reaches
the cluster. . .

2. . . . locate the key
3. . . . choose to which server

direct the request.
4. The chosen server

processes the request.
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Model
Application and platform

V1

V2 V3
V4

K1 K2 K3 K4

T1 T2 T3 T4 T5 T6

Size of V4



Values {V1, . . . , Vc }
Keys {K1, . . . , Kc }
Requests {T1, . . . , Tn}

• Each request carries a key.

• Each key is associated to a value.
• Requests have different processing times.
• Processing time of a request is linear in

requested value size.
• A request is released at time ri .
• Preemption is not allowed.
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Model
Objective

Read-latency −→ Flow time Fi = Ci − ri of each request
(where Ci is the completion time)

99th quantile −→ ∼ Max-flow Fmax = max Fi

Fairness/equity −→ Weighted max-flow maxwiFi (e.g., min-
imize the stretch instead of pure latency)

Scheduling Problem
Considering our constraints and objective, we are interested in the scheduling
problem P|Mi , online-ri |maxwiFi (Graham’s notation).
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Scheduling
Without release times (Fi = Ci)

Our problem is clearly NP-hard (by reduction to the parallel makespan
problem). First approach: try to relax the problem and find which variants
are easier.

• Start with the single-server problem; we give an optimal algorithm.

Algorithm 1 Single-Simple
Require: wi
1: schedule requests by non-increasing order of wi

Theorem
Single-Simple solves 1||maxwiCi in polynomial-time.
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Scheduling
Without release times (Fi = Ci)

• By a simple exchange argument, Single-Simple is optimal on
parallel platforms (with full replication) when costs are homogeneous.

Theorem
Single-Simple solves P|pi = p|maxwiCi in polynomial-time.

• For heterogeneous costs, we find that it approximates the problem by
a factor 2− 1/m, with m the number of machines.

Theorem
Single-Simple is a tight (2− 1/m)-approximation for P||maxwiCi .
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Scheduling
Offline problem

• The preemptive version of our problem is solved by Legrand et al.1

Theorem
R|ri , pmtn|maxwiFi can be solved in polynomial-time.

Model restricted replication in unrelated setting
If a request i cannot be executed by a server j , set the corresponding processing
time pij =∞. As a consequence, solving R|ri , pmtn|maxwiFi also solves
P|Mi , ri , pmtn|maxwiFi .

1Legrand, A., Su, A., Vivien, F.: Minimizing the stretch when scheduling flows of
divisible requests. Journal of Scheduling (2008).
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Scheduling
Offline problem

• Recall we do not allow preemption in our model, mainly because of
the overhead of migration. By a reduction to the parallel makespan
problem, we show that the problem becomes NP-complete when
migration is not allowed. . .

Theorem
The non-migratory version of R|ri , pmtn|maxwiFi is NP-complete.

• . . . but the preemptive version still provides a lower bound for our
problem!
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Simulations
Online heuristics

Scheduling happens at two levels.

1. Replica Selection: choose which resource will execute the request.

• EFT: send request to the least-loaded server.
• EFT-S: same as EFT, but specializes some servers for short requests.
• State-of-the-art heuristics: Héron2, LOR, Random.

2. Local Execution: choose in which order the server executes the local
queue.

• FIFO: classic first-in first-out queue.
• MWF: sort queue by non-increasing weighted flow time.

Note on EFT
EFT is very difficult to achieve in a real system. One would consider a degraded
version in practice; our goal here is to evaluate the best possible situation.

2Jaiman, V., Ben Mokhtar, S., Quéma, V., Chen, L. Y., Rivière, E.: Héron: Taming
tail latencies in key-value stores under heterogeneous workloads. 37th Symposium on
Reliable Distributed Systems (2018).
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Simulations
Distribution of normalized read-latency and stretch maximums (1000 requests)

FIFO MWF (wi = 1/pi)
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Simulations
Results

Takeaways

• EFT allows to get very close to the lower bound for read-latency.
• EFT is the most stable heuristic for read-latency between scenarios.
• EFT-S is not good for read-latency, but it is the best for the stretch.
• MWF improves the stretch objective of all selection heuristics without

worsening read-latency too much.
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Conclusion

• Formal model of key-value store.
• Intractability of the related scheduling problem, even for some

restricted variants.
• Comparison of online heuristics with a lower bound.

Answers to initial questions

• Is there an optimal scheduling strategy?
→ The problem is NP-hard.

• Can we bound the performance of an offline strategy?
→ Yes! The preemptive version provides a lower bound.

• What information do we need to build an efficient strategy?
→ Simulations show that a good knowledge of current load is critical.
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